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Abstract. Component technologies offer a promising approach for man-
aging the increasing complexity and interdisciplinary nature of high-
performance scientific applications. Language interoperability provides
the flexibility required by component architectures. In this paper, we
present an approach to language interoperability for high-performance
parallel components. Based on Interface Definition Language (IDL) tech-
niques, we have developed a Scientific IDL (SIDL) that focuses on the
abstractions and performance requirements of the scientific domain. We
have developed a SIDL compiler and the associated run-time support for
reference counting, reflection, object management, and basic exception
handling. The SIDL approach has been validated for a scientific linear
solver library. Initial timing results indicate that the performance over-
head is minimal (less than 1%), whereas the savings in development time
for interoperable software libraries can be substantial.

1 Introduction

The scientific computing community is beginning to adopt component technolo-
gies and associated programming methodologies [1, 2, 10, 17] to manage the
complexity of scientific code and facilitate code sharing and reuse. Components
require language interoperability to isolate component implementation details
from applications. This ensures that applications and components can be cre-
ated and evolve separately. With the proliferation of languages used for numerical
simulation—such as C, C++, Fortran 90, Fortran 77, Java, and Python—the
lack of seamless language interoperability negatively impacts the reusability of
scientific codes.

Providing interoperability among the many languages used in scientific com-
puting is a difficult problem for both component and library developers. Without
language interoperability, application developers must use only the same lan-
guage as the components, even though better languages may exist. If language

* Work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48. This work has been
funded by LDRD grant 99-ERD-078. Available as LLNL techinical report UCRL-
JC-134260.



interoperability is desired, component developers and users are often forced to
write “glue code” that mediates data representations and calling mechanisms
between languages. However, this approach is labor-intensive and in many cases
does not provide seamless language integration across the various calling lan-
guages. Both approaches couple the components and applications too tightly,
restricting component reuse and flexibility.

1.1 Language Interoperability Design Considerations

The design considerations associated with language interoperability for high-
performance scientific computing differ from those of the business sector, which
is supported by industry efforts such as COM [7, 15] and CORBA [16]. The
Common Component Architecture (CCA) [1], Equation Solver Interface [9] and
other scientific computing working groups require support for complex numbers,
Fortran-style dynamic multidimensional arrays, object-oriented semantics with
multiple inheritance and method overriding, and very efficient function invo-
cation for components living in the same address space. The CCA consortium
is developing component technologies appropriate for high-performance paral-
lel scientific computing. The ESI is developing standards for linear solvers and
associated preconditioners based on component approaches to increase the in-
teroperability of numerical software developed by different development teams.

1.2 Related Interoperability Approaches

Several language interoperability packages have been developed that automati-
cally generate glue code to support calls among a small set of targeted languages.
For example, the SWIG package [3] reads C and C++ header files and gener-
ates the mediating code that allows these routines to be called from scripting
languages such as Python. Such approaches typically introduce an asymmetric
relationship between the scripting language and the compiled language. Calls
from the scripting language to the compiled language are straight-forward, but
calls from the compiled language to the scripting language are difficult or are
not supported.

Foreign invocation libraries have been used to manage interoperability among
targeted languages. For instance, the Java Native Interface [13] defines a set of
library routines that enables Java code to interoperate with libraries written in
C and C++.

Such interoperability approaches support language interoperability among
only a limited set of languages, and they do not support a single, universal
mechanism that works with all languages. In the worst case, interoperability
among N languages could require O(N?) different approaches. Component ar-
chitectures require a more general approach, which we describe in the following
section.



1.3 Interoperability Through an IDL Approach

One interoperability mechanism used successfully by the distributed systems and
components community [12, 15, 16, 18] is based on the concept of an Interface
Definition Language or IDL. The IDL is a new “language” that describes the
calling interfaces to software packages written in standard programming lan-
guages such as C, Fortran, or Java. Given an IDL description of the interface,
IDL compilers automatically generate the glue code necessary to call that soft-
ware component from other programming languages. The advantage of an IDL
approach over other approaches is that it provides a single, uniform mechanism
for interoperability among a variety of languages.

Current IDL implementations are not sufficient for specifying interfaces to
high-performance scientific components. First, standard IDLs such as those de-
fined by CORBA and COM are targeted towards business objects and do not in-
clude basic scientific computing data types such as complex numbers or dynamic
multidimensional arrays. Second, approaches focused on distributed objects do
not generally provide support for high-performance, same address space function
calls between different languages. Our performance goal is to reduce the overhead
of single address space function calls to about that of a C++ virtual function
invocation. Third, many IDLs do not support multiple inheritance or have a lim-
ited object model. For example, COM does not support multiple inheritance and
supports implementation inheritance only through composition or aggregation,
which can be computationally expensive and difficult to implement. CORBA
does not support method overriding, which is required for polymorphism.

We have adopted an IDL approach for handling language interoperability in
a scientific computing environment. We have developed a Scientific IDL called
SIDL [6, 14] as well as a run-time environment that implements bindings to SIDL
and provides the library support necessary for a scientific component architec-
ture. Currently SIDL supports bindings to C and Fortran 77, although others
are under development. Preliminary experiments with a scientific solver library
have shown that SIDL is expressive enough for scientific computing and that
language interoperability is possible with little measurable run-time overheads.

1.4 Paper Organization

This paper is organized as follows. Section 2 introduces SIDL features that are
necessary for high-performance parallel computing. Section 3 describes the bind-
ings of SIDL to C and Fortran 77, as well as the run-time environment, which
includes a SIDL compiler and library support. Section 4 details the process of
applying the SIDL interoperability approach to a scientific software library and
provides parallel performance results for both C and Fortran. Finally, we con-
clude in Section 5 with an analysis of the lessons learned and the identification
of future research issues.



2 Scientific Interface Definition Language

A scientific IDL must be sufficiently expressive to represent the abstractions
and data types common in scientific computing, such as dynamic multidimen-
sional arrays and complex numbers. Polymorphism—required by some advanced
numerical libraries [9]—requires an IDL with an object model that supports mul-
tiple inheritance and method overriding. The IDL should also provide robust and
efficient cross-language error handling mechanisms.

Unfortunately, no current IDLs support all these capabilities. Most IDLs
have been designed for operating systems [7, 8] or for distributed client-server
computing in the business domain [12, 16, 18] and not for scientific computing.

The design of our Scientific IDL borrows many ideas from the CORBA
IDL [16] and the Java programming language [11]. SIDL supports an object
model similar to Java with separate interfaces and classes, scientific data types
such as multidimensional arrays, and an error handling mechanism similar to
Java and CORBA. SIDL provides reflection capabilities that are similar to Java.

The following sections describe SIDL in more detail. An example of SIDL for
a scientific preconditioning solver library is given in Figure 3 of Section 4.

2.1 Scientific Data Types

In addition to standard data types such as int, char, bool, string, and double,
SIDL supports dcomplez, fcomplex, and array. An fcomplex is a complex number
of type float, and a dcomplex is a complex number of type double. A SIDL array
is a multidimensional array contiguous in memory, similar to the Fortran-style
arrays commonly used in scientific computing. The array type has both a type,
such as int or double, and a dimension, currently between one through four, in-
clusive. In comparison, CORBA supports only statically-sized multidimensional
arrays and single-dimension sequences, and COM supports only pointer-based,
ragged multidimensional arrays.

2.2 SIDL Object Model

The SIDL object model is similar to that of the Java programming language.
We chose the Java object model for SIDL because it provides a simple model
for multiple inheritance. SIDL supports both interfaces and classes. A SIDL class
may inherit multiple interfaces but only one class implementation. This approach
solves the ambiguity problems associated with multiple implementation inheri-
tance in languages such as C++.

SIDL provides a new set of interface method declarations. These declara-
tions provide optimization opportunities and increase the expressiveness of the
IDL. Like Java, class methods may be declared abstract, final, or static. An
abstract method is purely declarative and provides no implementation; an im-
plementation must be provided by a child class. A final method is one that
cannot be overridden by child classes. The final construct enables optimizations
in the run-time system that eliminate potential dereferences to an overriding



method. As in C++ or Java, static methods are associated with a class, not a
class instance, and therefore may be invoked without an object. The static con-
struct simplifies developing SIDL interfaces to legacy libraries that were written
without object-oriented semantics.

2.3 Scoping and Exception Handling

Every class and interface belongs to a particular package scope. Packages in SIDL
are similar to namespaces in C++ and packages in Java. The package construct
is used to create nested SIDL namespaces. Packages help prevent global naming
collisions of classes and interfaces that are developed by different code teams.
Component architectures require robust error handling mechanisms that op-
erate across language barriers. We have designed an error reporting mechanism
similar to Java. All exceptions in SIDL are objects that inherit from a par-
ticular library interface called Throwable. Error objects support more complex
error reporting than what is possible with simple integer error return codes. Er-
ror conditions are indicated through an environment variable that is similar to

CORBA.

2.4 Reflection

Reflection is the mechanism through which a description of object methods and
method arguments can be determined at run-time. Reflection is an critical ca-
pability for component architectures, as it allows applications to discover, query,
and execute methods at run-time. This allows applications to create and use
components based on run-time information, and to view interface information
for dynamically loaded components that is often unavailable at compile-time.

The SIDL run-time library will support a reflection mechanism that is based
on the design of the Java library classes in java.lang and java.lang.reflect.
The SIDL compiler automatically generates reflection information for every in-
terface and class based on its IDL description. The run-time library will support
queries on classes and interfaces that allow methods to be discovered and invoked
at run-time.

3 Bindings and Implementation

SIDL defines component interfaces in a language-independent manner. For each
programming language, we must define language mappings that map constructs
in SIDL onto that target language. In this section, we describe the mappings of
SIDL to C and Fortran 77, as well as the required library support for the run-
time environment. We discuss only the more challenging aspects of the mappings
and implementation; a complete specification can be found elsewhere [14].



3.1 Mappings to C and Fortran 77

Because SIDL is based on CORBA IDL, we were able to use the CORBA specifi-
cation [16] as a guide in mapping many of the SIDL constructs into C. Fortran 77
mappings closely followed the C mappings, whith exceptions as described be-
low. The mappings for complex numbers and multidimensional arrays to C and
Fortran 77, which are not part of the CORBA IDL, where relatively straight-
forward.

Mapping SIDL classes and interfaces in C and Fortran 77 presented some
interesting challenges, since neither language supports object-oriented features.
However, the IDL approach allows object-oriented concepts to be mapped onto
non-object-oriented languages. For C, SIDL classes and interfaces are mapped
to opaque structure pointers that encapsulate private data members, method
invocation tables, and other implementation details. For Fortran 77, classes
and interfaces are mapped to integers that are used as handles. The run-time
environment manages object information and automatically translates between
the Fortran integer representation and the actual object reference. Methods on
SIDL objects are invoked using a standard C or Fortran 77 function call with
the object reference as the first parameter. Figure 3 of Section 4 illustrates these
conventions for a scientific linear solver library.

3.2 Implementing the SIDL Run-Time Environment

Much of the effort in developing the SIDL compiler and run-time system was in
implementing the object model, namely: virtual function tables, object lookup
table for mapping to and from Fortran integer handles, reference counting,
dynamic type casting, exception handling mechanism, and reflection capabilities.
The run-time library support is implemented in C and the compiler is written in
Java. The “glue” code generated from the compiler is in C.

All object support is distributed between the glue code and the run-time li-
brary. The glue code contains the implementation of the object mapping, includ-
ing the virtual function lookup table (similar to a C++ virtual function table),
constructors, destructors, and support for dynamic type casting. The run-time
library contains support for reference counting, object lookup mechanisms nec-
essary for Fortran objects, and exception handling mechanisms. The reflection
capability is supported through both the glue code and the run-time library.

One of the goals of the SIDL run-time environment is to provide extremely
fast function calls between components living in the same memory space. For
C to C calls, our current implementation requires one table look-up (to support
virtual functions) and one additional function call. Calls between C and another
language add the overhead of an additional function call, and calls between
two non-C languages requires yet another call. These additional function calls
are needed to isolate language-specific linker names. Where possible, the SIDL
compiler takes advantage of the static and final qualifiers in SIDL by eliminating
a function table lookup to functions for those types.



4 Applying SIDL to a Scientific Library

As a test case, we used the SIDL tools to create new interfaces for a semicours-
ening mulitigrid (SMG) solver [4], a preconditioner that is part of the hypre
linear solver library [5]. hypre is a library of parallel solvers for large, sparse
linear systems being developed at Lawrence Livermore National Laboratory’s
Center for Applied Scientific Computing. The library currently consists of over
30,000 lines of C code, and it has 94 encapsulated user-interface functions. To
test our approach, we created a SIDL interface and and created both C and
Fortran 77library wrappers with SIDLWe ran similar test drivers for the two
SIDL generated wrappers and the original C interface already provided by the
library, and compared the results from all three runs.

hypre Interface SIDL Database

Description

Language Mappings

Compiler Details

Caller SIDL Compiler hypre Library

Language Language
Stub Skeleton

called by_-» | Glue Code Glue Code , wraps library

library user implementation

Fig. 1. Generating ”glue” code for the hypre library using the SIDL tools.

Wrapping hypre using SIDL proceeded in three steps. First, the existing hypre
interface was written in SIDL by two people, one who was familiar with SIDL
and another who was familiar with the hypre library. The second step was to
run the SIDL compiler with the interface description as input to automatically
generate the glue code for each class (see Figure 1). Since the names created
by SIDL compiler are slightly different from those expected by the rest of the
original hypre library, the library had to be slightly modified to match the new
names of the SMG interfaces. This step is not required if SIDL conventions are
used and only has to be done once. Once the function calls were manually added
for the C language bindings, the Fortran interface was created automatically by
running the compiler once more with options for Fortran. The final step was to
compile and link the drivers with the skeletons, stubs, and the hypre library.

We rewrote an existing SMG test driver to test the performance of the new
interfaces. The driver uses SMG to solve Laplace’s equation on a 3-D rectangular
domain with a 7-point stencil. First, all calls in the existing C driver to the hypre
library were replaced with the new C interfaces created by SIDL. Then we wrote
a new Fortran driver for the same problem that calls the same hypre functions



package hypre {
class stencil {
stencil NewStencil(in int dim, in int size);
int SetStencilElement(in int index, inout array<int> offset);
};
class grid {
grid NewGrid(in mpi_com com, in int dimension);
int SetGridExtents(inout array<int> lower, inout array<int> upper);
};
class vector {
vector NewVector(in mpi_com com, in grid g, in stencil s);
int SetVectorBoxValues(inout array<int> lower,
inout array<int> upper, inout array<double> values);

};
class matrix { /* matrix member functions omitted in this figure */ };
class smg_solver {

int Setup(inout matrix A, inout vector b, inout vector x);

int Solve(inout matrix A, inout vector b, inout vector x);

Fig. 2. Portions of the hypre interface specification written in SIDL.

via the new Fortran interface. Figure 2 shows a portion of the hypre interface
written in SIDL, and Figure 3 shows portions of both the C and Fortran drivers
that call the hypre library using the automatically generated interfaces.

Both test drivers produced the same numerical results. We compared the
efficiency of the new C and Fortran drivers to the original C driver. The drivers
that used SIDL solved large problems—both sequentially and in parallel on 216
processors—with no noticeable effect (less than 1%) on the speed of execution.
The overhead added by SIDL is negligible when compared to the overhead of the
numerical kernels in the library.

This entire process required less than an afternoon to generate the SIDL
interface, edit the skeleton code, and generate C and Fortran stub code. To put
this in perspective, there was an effort by the hypre team to manually generate
a Fortran interface for hypre that required over one person-week of effort. This
work was targeted at the Solaris platform. Porting this hand-generated Fortran
interface to another platform required a substantial re-write of the interface due
to differences in Fortran name representation. Such platform dependencies are
managed automatically by the SIDL tools.



C Test Code Fortran 77 Test Code

hypre_vector b, x; integer b, x

hypre_matrix A; integer A

hypre_smg_solver solver; integer solver

hypre_stencil s; integer s

b = hypre_vector_NewVector(com, grid, s); b = hypre_vector_NewVector(com, grid, s)
x = hypre_vector_NewVector(com, grid, s); x = hypre_vector_NewVector(com, grid, s)
A = hypre_matrix_NewMatrix(com, grid, s); A = hypre_matrix_NewMatrix(com, grid, s)
solver = hy'pre_smg_solver_new(); solver = hypre_smg_solver_new()
hypre_smg_solver_SetMaxItr(solver, 10); hypre_smg_solver_SetMaxItr(solver, 10)
hypre_smg_solver_Solve(solver, &A, &b, &x); hypre_smg_solver_Solve(solver, A, b, x)
hypre_smg_solver_Finalize(solver); hypre_smg_solver_Finalize(solver)

Fig. 3. Sample test code calling hypre interfaces for C and Fortran 77 generated auto-
matically using the SIDL tools.

5 Lessons Learned and Future Work

We have presented SIDL, a scientific interface definition language, and a run-
time that meets the requirements requirements for scientific computing. SIDL
borrows heavily from the CORBA IDL and Java programming language, while
adding features necessary for scientific computing. SIDL seems to capture the
abstractions necessary for scientific computing, as well as new features that a
run-time can use to perform optimizations, which are not present in current IDL
standards.

The SIDL run-time also provides fast same address space calls, which is im-
portant for effective scientific computation. A comparison using the hypre library
showed that SIDL added only one to two percent overhead compared to the na-
tive interfaces. This is neglible when compared to the great savings in developer
costs and flexibility. The SIDL run-time allowed the creation of a Fortran 77
interface in the hypre library in a fifth of the time required to create a similar
interface by hand.

In the future we will develop bindings for C++, Java, Fortran 90, and Python
and implement those bindings. Fortran 90 is challenging since Fortran 90 call-
ing conventions vary widely from compiler to compiler. We will also continue our
collaboration efforts with the CCA and ESI working groups. Other ESI specifi-
cations will require more expressability from SIDL than the hypre interface re-
quires. Features may also need to be added to SIDL to support the specification
of high-performance scientific components (e.g. CCA compliant components).
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